Source code for deel.torchlip.utils.lconv_norm
# -*- coding: utf-8 -*-
# Copyright IRT Antoine de Saint Exupéry et Université Paul Sabatier Toulouse III - All
# rights reserved. DEEL is a research program operated by IVADO, IRT Saint Exupéry,
# CRIAQ and ANITI - https://www.deel.ai/
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# Copyright IRT Antoine de Saint Exupéry et Université Paul Sabatier Toulouse III - All
# rights reserved. DEEL is a research program operated by IVADO, IRT Saint Exupéry,
# CRIAQ and ANITI - https://www.deel.ai/
# =====================================================================================
from typing import Any
from typing import Tuple
import numpy as np
import torch
from .hook_norm import HookNorm
def compute_lconv_coef(
kernel_size: Tuple[int, ...],
input_shape: Tuple[int, ...],
strides: Tuple[int, ...] = (1, 1),
) -> float:
# See https://arxiv.org/abs/2006.06520
stride = np.prod(strides)
k1, k2 = kernel_size
h, w = input_shape[-2:]
if stride == 1:
k1_div2 = (k1 - 1) / 2
k2_div2 = (k2 - 1) / 2
coefLip = np.sqrt(
(w * h)
/ ((k1 * h - k1_div2 * (k1_div2 + 1)) * (k2 * w - k2_div2 * (k2_div2 + 1)))
)
else:
sn1 = strides[0]
sn2 = strides[1]
coefLip = np.sqrt(1.0 / (np.ceil(k1 / sn1) * np.ceil(k2 / sn2)))
return coefLip # type: ignore
class LConvNorm(HookNorm):
"""
Kernel normalization for Lipschitz convolution. Normalize weights
based on input shape and kernel size, see https://arxiv.org/abs/2006.06520
"""
@staticmethod
def apply(module: torch.nn.Module) -> "LConvNorm":
if not isinstance(module, torch.nn.Conv2d):
raise RuntimeError(
"Can only apply lconv_norm hooks on 2D-convolutional layer."
)
return LConvNorm(module, "weight")
def compute_weight(self, module: torch.nn.Module, inputs: Any) -> torch.Tensor:
assert isinstance(module, torch.nn.Conv2d)
coefficient = compute_lconv_coef(
module.kernel_size, inputs[0].shape[-4:], module.stride
)
return self.weight(module) * coefficient
[docs]def lconv_norm(module: torch.nn.Conv2d) -> torch.nn.Conv2d:
r"""
Applies Lipschitz normalization to a kernel in the given convolutional.
This is implemented via a hook that multiplies the kernel by a value computed
from the input shape before every ``forward()`` call.
See `Achieving robustness in classification using optimal transport with hinge
regularization <https://arxiv.org/abs/2006.06520>`_.
Args:
module: Containing module.
Returns:
The original module with the Lipschitz normalization hook.
Example::
>>> m = lconv_norm(nn.Conv2d(16, 16, (3, 3)))
>>> m
Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1))
"""
LConvNorm.apply(module)
return module
[docs]def remove_lconv_norm(module: torch.nn.Conv2d) -> torch.nn.Conv2d:
r"""
Removes the Lipschitz normalization hook from a module.
Args:
module: Containing module.
Example:
>>> m = lconv_norm(nn.Conv2d(16, 16, (3, 3)))
>>> remove_lconv_norm(m)
"""
for k, hook in module._forward_pre_hooks.items():
if isinstance(hook, LConvNorm):
hook.remove(module)
del module._forward_pre_hooks[k]
return module
raise ValueError("lconv_norm not found in {}".format(module))