Source code for deel.torchlip.utils.frobenius_norm
# -*- coding: utf-8 -*-
# Copyright IRT Antoine de Saint Exupéry et Université Paul Sabatier Toulouse III - All
# rights reserved. DEEL is a research program operated by IVADO, IRT Saint Exupéry,
# CRIAQ and ANITI - https://www.deel.ai/
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# Copyright IRT Antoine de Saint Exupéry et Université Paul Sabatier Toulouse III - All
# rights reserved. DEEL is a research program operated by IVADO, IRT Saint Exupéry,
# CRIAQ and ANITI - https://www.deel.ai/
# =====================================================================================
from typing import Any
from typing import TypeVar
import torch
from .hook_norm import HookNorm
class FrobeniusNorm(HookNorm):
def __init__(self, module: torch.nn.Module, name: str):
super().__init__(module, name)
def compute_weight(self, module: torch.nn.Module, inputs: Any) -> torch.Tensor:
w: torch.Tensor = self.weight(module)
return w / torch.norm(w) # type: ignore
@staticmethod
def apply(module: torch.nn.Module, name: str) -> "FrobeniusNorm":
return FrobeniusNorm(module, name)
T_module = TypeVar("T_module", bound=torch.nn.Module)
[docs]def frobenius_norm(module: T_module, name: str = "weight") -> T_module:
r"""
Applies Frobenius normalization to a parameter in the given module.
.. math::
\mathbf{W} = \dfrac{\mathbf{W}}{\Vert{}\mathbf{W}\Vert{}}
This is implemented via a hook that applies Bjorck normalization before every
``forward()`` call.
Args:
module: Containing module.
name: Name of weight parameter.
Returns:
The original module with the Frobenius normalization hook.
Example::
>>> m = frobenius_norm(nn.Linear(20, 40), name='weight')
>>> m
Linear(in_features=20, out_features=40, bias=True)
"""
FrobeniusNorm.apply(module, name)
return module
[docs]def remove_frobenius_norm(module: T_module, name: str = "weight") -> T_module:
r"""
Removes the Frobenius normalization reparameterization from a module.
Args:
module: Containing module.
name: Name of weight parameter.
Example:
>>> m = frobenius_norm(nn.Linear(20, 40))
>>> remove_frobenius_norm(m)
"""
for k, hook in module._forward_pre_hooks.items():
if isinstance(hook, FrobeniusNorm) and hook.name == name:
hook.remove(module)
del module._forward_pre_hooks[k]
return module
raise ValueError("frobenius_norm of '{}' not found in {}".format(name, module))