Shortcuts

Source code for deel.torchlip.modules.loss

# -*- coding: utf-8 -*-
# Copyright IRT Antoine de Saint Exupéry et Université Paul Sabatier Toulouse III - All
# rights reserved. DEEL is a research program operated by IVADO, IRT Saint Exupéry,
# CRIAQ and ANITI - https://www.deel.ai/
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# Copyright IRT Antoine de Saint Exupéry et Université Paul Sabatier Toulouse III - All
# rights reserved. DEEL is a research program operated by IVADO, IRT Saint Exupéry,
# CRIAQ and ANITI - https://www.deel.ai/
# =====================================================================================
from typing import Tuple

import torch

from .. import functional as F


[docs]class KRLoss(torch.nn.Module): """ Loss that estimates the Wasserstein-1 distance using the Kantorovich-Rubinstein duality. """ def __init__(self, true_values: Tuple[int, int] = (0, 1)): """ Args: true_values: tuple containing the two label for each predicted class. """ super().__init__() self.true_values = true_values def forward(self, input: torch.Tensor, target: torch.Tensor) -> torch.Tensor: return F.kr_loss(input, target, self.true_values)
[docs]class NegKRLoss(torch.nn.Module): """ Loss that estimates the negative of the Wasserstein-1 distance using the Kantorovich-Rubinstein duality. """ def __init__(self, true_values: Tuple[int, int] = (0, 1)): """ Args: true_values: tuple containing the two label for each predicted class. """ super().__init__() self.true_values = true_values def forward(self, input: torch.Tensor, target: torch.Tensor) -> torch.Tensor: return F.neg_kr_loss(input, target, self.true_values)
[docs]class HingeMarginLoss(torch.nn.Module): """ Hinge margin loss. """ def __init__(self, min_margin: float = 1.0): """ Args: min_margin: The minimal margin to enforce. """ super().__init__() self.min_margin = min_margin def forward(self, input: torch.Tensor, target: torch.Tensor) -> torch.Tensor: return F.hinge_margin_loss(input, target, self.min_margin)
[docs]class HKRLoss(torch.nn.Module): """ Loss that estimates the Wasserstein-1 distance using the Kantorovich-Rubinstein duality with a hinge regularization. """ def __init__( self, alpha: float, min_margin: float = 1.0, true_values: Tuple[int, int] = (-1, 1), ): """ Args: alpha: Regularization factor between the hinge and the KR loss. min_margin: Minimal margin for the hinge loss. true_values: tuple containing the two label for each predicted class. """ super().__init__() self.alpha = alpha self.min_margin = min_margin self.true_values = true_values def forward(self, input: torch.Tensor, target: torch.Tensor) -> torch.Tensor: return F.hkr_loss(input, target, self.alpha, self.min_margin, self.true_values)
class KRMulticlassLoss(torch.nn.Module): """ The Wasserstein multiclass loss between ``input`` and ``target``. """ def forward(self, input: torch.Tensor, target: torch.Tensor) -> torch.Tensor: return F.kr_multiclass_loss(input, target) class HingeMulticlassLoss(torch.nn.Module): """ Loss to estimate the Hinge loss in a multiclass setup. It computes the element-wise hinge term. This class use pytorch implementation: torch.nn.functional.hinge_embedding_loss """ def __init__(self, min_margin: float = 1.0): """ Args: min_margin: The minimal margin to enforce. """ super().__init__() self.min_margin = min_margin def forward(self, input: torch.Tensor, target: torch.Tensor) -> torch.Tensor: return F.hinge_multiclass_loss(input, target, self.min_margin) class HKRMulticlassLoss(torch.nn.Module): """ Loss that estimates the Wasserstein-1 distance using the Kantorovich-Rubinstein duality with a hinge regularization. """ def __init__( self, alpha: float, min_margin: float = 1.0, ): """ Args: alpha: Regularization factor between the hinge and the KR loss. min_margin: Minimal margin for the hinge loss. """ super().__init__() self.alpha = alpha self.min_margin = min_margin def forward(self, input: torch.Tensor, target: torch.Tensor) -> torch.Tensor: return F.hkr_multiclass_loss(input, target, self.alpha, self.min_margin)

© Copyright 2020, IRT Antoine de Saint Exupéry - All rights reserved. DEEL is a research program operated by IVADO, IRT Saint Exupéry, CRIAQ and ANITI..

Built with Sphinx using PyTorch's theme provided originally by Read the Docs.