Shortcuts

Source code for deel.torchlip.modules.activation

# -*- coding: utf-8 -*-
# Copyright IRT Antoine de Saint Exupéry et Université Paul Sabatier Toulouse III - All
# rights reserved. DEEL is a research program operated by IVADO, IRT Saint Exupéry,
# CRIAQ and ANITI - https://www.deel.ai/
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# Copyright IRT Antoine de Saint Exupéry et Université Paul Sabatier Toulouse III - All
# rights reserved. DEEL is a research program operated by IVADO, IRT Saint Exupéry,
# CRIAQ and ANITI - https://www.deel.ai/
# =====================================================================================
"""
This module contains extra activation functions which respect the Lipschitz constant.
It can be added as a layer, or it can be used in the "activation" params for other
layers.
"""
from typing import Optional

import torch
import torch.nn as nn

from .. import functional as F
from .module import LipschitzModule


[docs]class MaxMin(nn.Module, LipschitzModule): r""" Applies max-min activation. If ``input`` is a tensor of shape :math:`(N, C)` and ``dim`` is ``None``, the output can be described as: .. math:: \text{out}(N_i, C_{2j}) = \max(\text{input}(N_i, C_j), 0)\\ \text{out}(N_i, C_{2j + 1}) = \max(-\text{input}(N_i, C_j), 0) where :math:`N` is the batch size and :math:`C` is the size of the tensor. See also :func:`.functional.max_min`. """ def __init__(self, dim: Optional[int] = None, k_coef_lip: float = 1.0): r""" Args: dim: The dimension to apply max-min. If None, will apply to the 0th dimension if the shape of input is :math:`(C)` or to the first if its :math:`(N, C, *)`. k_coef_lip: The lipschitz coefficient to enforce. Shape: - Input: :math:`(C)` or :math:`(N, C, *)` where :math:`*` means any number of additional dimensions. - Output: :math:`(2C)` is the input shape was :math:`(C)`, or :math:`(N, 2C, *)` if ``dim`` is ``None``, otherwise :math:`(N, *, 2C_{dim}, *)` where :math:`C_{dim}` is the dimension corresponding to the ``dim`` parameter. Note: M. Blot, M. Cord, et N. Thome, « Max-min convolutional neural networks for image classification », in 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 2016, p. 3678‑3682. """ nn.Module.__init__(self) LipschitzModule.__init__(self, k_coef_lip) self._dim = dim def forward(self, input: torch.Tensor) -> torch.Tensor: return F.max_min(input, self._dim) * self._coefficient_lip def vanilla_export(self): return self
[docs]class GroupSort(nn.Module, LipschitzModule): r""" Applies group-sort activation. The activation works by first reshaping the input to a tensor of shape :math:`(N', G)` where :math:`G` is the group size and :math:`N'` the number of groups, then sorting each group of size :math:`G` and then reshaping to the original input shape. See also :func:`.functional.group_sort`. """ def __init__(self, group_size: Optional[int] = None, k_coef_lip: float = 1.0): """ Args: group_size: group size used when sorting. When None group size is set to input size (fullSort behavior) data_format: either channels_first or channels_last k_coef_lip: The lipschitz coefficient to enforce. Shape: - Input: :math:`(N,∗)` where :math:`*` means, any number of additional dimensions - Output: :math:`(N,*)`, same shape as the input. Example: >>> m = torch.randn(2, 4) tensor([[ 0.2805, -2.0528, 0.6478, 0.5745], [-1.4075, 0.0435, -1.2408, 0.2945]]) >>> torchlip.GroupSort(4)(m) tensor([[-2.0528, 0.2805, 0.5745, 0.6478], [-1.4075, -1.2408, 0.0435, 0.2945]]) """ nn.Module.__init__(self) LipschitzModule.__init__(self, k_coef_lip) self.group_size = group_size def forward(self, input: torch.Tensor) -> torch.Tensor: return F.group_sort(input, self.group_size) * self._coefficient_lip def vanilla_export(self): return self
[docs]class GroupSort2(GroupSort): r""" Applies group-sort activation with a group size of 2. See :class:`GroupSort` for details. See also :func:`.functional.group_sort_2`. """ def __init__(self, k_coef_lip: float = 1.0): """ Args: k_coef_lip: The lipschitz coefficient to enforce. """ super().__init__(group_size=2, k_coef_lip=k_coef_lip)
[docs]class FullSort(GroupSort): r""" Applies full-sort activation. This is equivalent to group-sort with a group-size equals to the size of the input. See :class:`GroupSort` for details. See also :func:`.functional.full_sort`. """ def __init__(self, k_coef_lip: float = 1.0): """ Args: k_coef_lip: The lipschitz coefficient to enforce. """ super().__init__(group_size=None, k_coef_lip=k_coef_lip)
[docs]class LPReLU(nn.PReLU, LipschitzModule): r""" Applies element-wise PReLU activation with Lipschitz constraint: .. math:: LPReLU(x) = \max(0, x) + a' * \min(0, x) or .. math:: LPReLU(x) = \text{LipschitzPReLU}(x) = \begin{cases} x, & \text{ if } x \geq 0 \\ a' * x, & \text{ otherwise } \end{cases} where :math:`a' = \max(\min(a, k), -k)`, and :math:`a` is a learnable parameter. See also :class:`torch.nn.PReLU` and :func:`.functional.lipschitz_prelu`. """ def __init__( self, num_parameters: int = 1, init: float = 0.25, k_coef_lip: float = 1.0 ): """ Args: num_parameters: Number of :math:`a` to learn. Although it takes an ``int`` as input, ` there are only two legitimate values: 1, or the number of channels at input. init: The initial value of :math:`a`. k_coef_lip: The lipschitz coefficient to enforce. """ nn.PReLU.__init__(self, num_parameters=num_parameters, init=init) LipschitzModule.__init__(self, k_coef_lip) def forward(self, input: torch.Tensor) -> torch.Tensor: return F.lipschitz_prelu(input, self.weight, self._coefficient_lip) def vanilla_export(self): layer = LPReLU(num_parameters=self.num_parameters) layer.weight.data = self.weight.data return layer

© Copyright 2020, IRT Antoine de Saint Exupéry - All rights reserved. DEEL is a research program operated by IVADO, IRT Saint Exupéry, CRIAQ and ANITI..

Built with Sphinx using PyTorch's theme provided originally by Read the Docs.