Gradient Input¶
View colab tutorial |
View source |
📰 Paper
Gradient
Quote
Gradient inputs was at first proposed as a technique to improve the sharpness of the attribution maps. The attribution is computed taking the (signed) partial derivatives of the output with respect to the input and multiplying them with the input itself.
-- Towards better understanding of the gradient-based attribution methods for Deep Neural Networks (2017)3
A theoretical analysis conducted by Ancona et al, 20183 showed that Gradient
More precisely, the explanation
with
Example¶
from xplique.attributions import GradientInput
# load images, labels and model
# ...
method = GradientInput(model)
explanations = method.explain(images, labels)
Notebooks¶
GradientInput
¶
Used to compute elementwise product between the saliency maps of Simonyan et al. and the
input (Gradient x Input).
__init__(self,
model: keras.src.engine.training.Model,
output_layer: Union[str, int, None] = None,
batch_size: Optional[int] = 64,
operator: Optional[Callable[[keras.src.engine.training.Model, tensorflow.python.framework.tensor.Tensor, tensorflow.python.framework.tensor.Tensor], float]] = None,
reducer: Optional[str] = 'mean')
¶
model: keras.src.engine.training.Model,
output_layer: Union[str, int, None] = None,
batch_size: Optional[int] = 64,
operator: Optional[Callable[[keras.src.engine.training.Model, tensorflow.python.framework.tensor.Tensor, tensorflow.python.framework.tensor.Tensor], float]] = None,
reducer: Optional[str] = 'mean')
Parameters
-
model : keras.src.engine.training.Model
The model from which we want to obtain explanations
-
output_layer : Union[str, int, None] = None
Layer to target for the outputs (e.g logits or after softmax).
If an
int
is provided it will be interpreted as a layer index.If a
string
is provided it will look for the layer name.Default to the last layer.
It is recommended to use the layer before Softmax.
-
batch_size : Optional[int] = 64
Number of inputs to explain at once, if None compute all at once.
-
operator : Optional[Callable[[keras.src.engine.training.Model, tensorflow.python.framework.tensor.Tensor, tensorflow.python.framework.tensor.Tensor], float]] = None
Function g to explain, g take 3 parameters (f, x, y) and should return a scalar, with f the model, x the inputs and y the targets. If None, use the standard operator g(f, x, y) = f(x)[y].
-
reducer : Optional[str] = 'mean'
String, name of the reducer to use. Either "min", "mean", "max", "sum", or
None
to ignore.Used only for images to obtain explanation with shape (n, h, w, 1).
explain(self,
inputs: Union[tf.Dataset, tensorflow.python.framework.tensor.Tensor, ] ,
targets: Union[tensorflow.python.framework.tensor.Tensor, , None] = None) -> tensorflow.python.framework.tensor.Tensor
¶
inputs: Union[tf.Dataset, tensorflow.python.framework.tensor.Tensor,
targets: Union[tensorflow.python.framework.tensor.Tensor,
Compute the explanations of the given inputs.
Accept Tensor, numpy array or tf.data.Dataset (in that case targets is None)
Parameters
-
inputs : Union[tf.Dataset, tensorflow.python.framework.tensor.Tensor,
] Dataset, Tensor or Array. Input samples to be explained.
If Dataset, targets should not be provided (included in Dataset).
Expected shape among (N, W), (N, T, W), (N, H, W, C).
More information in the documentation.
-
targets : Union[tensorflow.python.framework.tensor.Tensor,
, None] = None Tensor or Array. One-hot encoding of the model's output from which an explanation is desired. One encoding per input and only one output at a time. Therefore, the expected shape is (N, output_size).
More information in the documentation.
Return
-
explanations : tensorflow.python.framework.tensor.Tensor
Explanation generated by the method.