KerasFeatureExtractor
KerasFeatureExtractor
¶
Bases: FeatureExtractor
Feature extractor based on "model" to construct a feature space on which OOD detection is performed. The features can be the output activation values of internal model layers, or the output of the model (softmax/logits).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
Callable
|
model to extract the features from |
required |
feature_layers_id |
List[Union[int, str]]
|
list of str or int that identify features to output. If int, the rank of the layer in the layer list If str, the name of the layer. Defaults to []. |
[-1]
|
input_layer_id |
Optional[Union[int, str]]
|
input layer of the feature extractor (to avoid useless forwards when working on the feature space without finetuning the bottom of the model). Defaults to None. |
None
|
react_threshold |
Optional[float]
|
if not None, penultimate layer activations are clipped under this threshold value (useful for ReAct). Defaults to None. |
None
|
scale_percentile |
Optional[float]
|
if not None, the features are scaled following the method of Xu et al., ICLR 2024. Defaults to None. |
None
|
ash_percentile |
Optional[float]
|
if not None, the features are scaled following the method of Djurisic et al., ICLR 2023. |
None
|
Source code in oodeel/extractor/keras_feature_extractor.py
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
|
find_layer(model, layer_id, index_offset=0, return_id=False)
staticmethod
¶
Find a layer in a model either by his name or by his index.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
Callable
|
model whose identified layer will be returned |
required |
layer_id |
Union[str, int]
|
layer identifier |
required |
index_offset |
int
|
index offset to find layers located before (negative offset) or after (positive offset) the identified layer |
0
|
return_id |
bool
|
if True, the layer will be returned with its id |
False
|
Raises:
Type | Description |
---|---|
ValueError
|
if the layer is not found |
Returns:
Type | Description |
---|---|
Union[tf.keras.layers.Layer, Tuple[tf.keras.layers.Layer, str]]
|
Union[tf.keras.layers.Layer, Tuple[tf.keras.layers.Layer, str]]: the corresponding layer and its id if return_id is True. |
Source code in oodeel/extractor/keras_feature_extractor.py
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
|
get_weights(layer_id)
¶
Get the weights of a layer
Parameters:
Name | Type | Description | Default |
---|---|---|---|
layer_id |
Union[int, str]
|
layer identifier |
required |
Returns:
Type | Description |
---|---|
List[tf.Tensor]
|
List[tf.Tensor]: weights and biases matrixes |
Source code in oodeel/extractor/keras_feature_extractor.py
300 301 302 303 304 305 306 307 308 309 |
|
predict(dataset, postproc_fns=None, verbose=False, **kwargs)
¶
Get the projection of the dataset in the feature space of self.model
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset |
Union[ItemType, tf.data.Dataset]
|
input dataset |
required |
postproc_fns |
Optional[Callable]
|
postprocessing function to apply to each feature immediately after forward. Default to None. |
None
|
verbose |
bool
|
if True, display a progress bar. Defaults to False. |
False
|
kwargs |
dict
|
additional arguments not considered for prediction |
{}
|
Returns:
Type | Description |
---|---|
Tuple[List[tf.Tensor], dict]
|
List[tf.Tensor], dict: features and extra information (logits, labels) as a dictionary. |
Source code in oodeel/extractor/keras_feature_extractor.py
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
|
predict_tensor(tensor, postproc_fns=None)
¶
Get the projection of tensor in the feature space of self.model
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tensor |
TensorType
|
input tensor (or dataset elem) |
required |
postproc_fns |
Optional[List[Callable]]
|
postprocessing function to apply to each feature immediately after forward. Default to None. |
None
|
Returns:
Type | Description |
---|---|
Tuple[List[tf.Tensor], tf.Tensor]
|
Tuple[List[tf.Tensor], tf.Tensor]: features, logits |
Source code in oodeel/extractor/keras_feature_extractor.py
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
|
prepare_extractor()
¶
Constructs the feature extractor model
Returns:
Type | Description |
---|---|
tf.keras.models.Model
|
tf.keras.models.Model: truncated model (extractor) |
Source code in oodeel/extractor/keras_feature_extractor.py
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
|