Training tools
get_toy_keras_convnet(num_classes)
¶
Basic keras convolutional classifier for toy datasets.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
num_classes |
int
|
Number of classes for the classification task. |
required |
Returns:
Type | Description |
---|---|
Model
|
tf.keras.Model: model |
Source code in oodeel/utils/tf_training_tools.py
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
|
get_toy_mlp(input_shape, num_classes)
¶
Basic keras MLP classifier for toy datasets.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_shape |
tuple
|
Input data shape. |
required |
num_classes |
int
|
Number of classes for the classification task. |
required |
Returns:
Type | Description |
---|---|
Model
|
tf.keras.Model: model |
Source code in oodeel/utils/tf_training_tools.py
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
|
train_tf_model(train_data, model, input_shape, num_classes, batch_size=128, epochs=50, loss='sparse_categorical_crossentropy', optimizer='adam', lr_scheduler=None, learning_rate=0.001, metrics=['accuracy'], imagenet_pretrained=False, validation_data=None, save_dir=None, save_best_only=True)
¶
Loads a model from tensorflow.python.keras.applications. If the dataset is different from imagenet, trains on provided dataset.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
train_data |
Dataset
|
training dataset. |
required |
model |
Union[Model, str]
|
if a string is provided, must be a model from tf.keras.applications or "toy_convnet" or "toy_mlp" |
required |
input_shape |
tuple
|
Shape of the input images. |
required |
num_classes |
int
|
Number of output classes. |
required |
batch_size |
int
|
Defaults to 128. |
128
|
epochs |
int
|
Defaults to 50. |
50
|
loss |
str
|
Defaults to "sparse_categorical_crossentropy". |
'sparse_categorical_crossentropy'
|
optimizer |
str
|
Defaults to "adam". |
'adam'
|
lr_scheduler |
str
|
("cosine" | "steps" | None). Defaults to None. |
None
|
learning_rate |
float
|
Defaults to 1e-3. |
0.001
|
metrics |
List[str]
|
Validation metrics. Defaults to ["accuracy"]. |
['accuracy']
|
imagenet_pretrained |
bool
|
Load a model pretrained on imagenet or not. Defaults to False. |
False
|
validation_data |
Optional[Dataset]
|
Defaults to None. |
None
|
save_dir |
Optional[str]
|
Directory to save the model. Defaults to None. |
None
|
save_best_only |
bool
|
If False, saved model will be the last one. Defaults to True. |
True
|
Returns:
Type | Description |
---|---|
Model
|
tf.keras.Model: Trained model |
Source code in oodeel/utils/tf_training_tools.py
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
|
ToyTorchConvnet
¶
Bases: Sequential
Basic torch convolutional classifier for toy datasets.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_shape |
tuple
|
Input data shape. |
required |
num_classes |
int
|
Number of classes for the classification task. |
required |
Source code in oodeel/utils/torch_training_tools.py
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
|
ToyTorchMLP
¶
Bases: Sequential
Basic torch MLP classifier for toy datasets.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_shape |
tuple
|
Input data shape. |
required |
num_classes |
int
|
Number of classes for the classification task. |
required |
Source code in oodeel/utils/torch_training_tools.py
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
|
train_torch_model(train_data, model, num_classes, epochs=50, loss='CrossEntropyLoss', optimizer='Adam', lr_scheduler='cosine', learning_rate=0.001, imagenet_pretrained=False, validation_data=None, save_dir=None, cuda_idx=0)
¶
Load a model (toy classifier or from torchvision.models) and train it over a torch dataloader.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
train_data |
DataLoader
|
train dataloader |
required |
model |
Union[Module, str]
|
if a string is provided, must be a model from torchvision.models or "toy_convnet" or "toy_mlp. |
required |
num_classes |
int
|
Number of output classes. |
required |
epochs |
int
|
Defaults to 50. |
50
|
loss |
str
|
Defaults to "CrossEntropyLoss". |
'CrossEntropyLoss'
|
optimizer |
str
|
Defaults to "Adam". |
'Adam'
|
lr_scheduler |
str
|
("cosine" | "steps" | None). Defaults to None. |
'cosine'
|
learning_rate |
float
|
Defaults to 1e-3. |
0.001
|
imagenet_pretrained |
bool
|
Load a model pretrained on imagenet or not. Defaults to False. |
False
|
validation_data |
Optional[DataLoader]
|
Defaults to None. |
None
|
save_dir |
Optional[str]
|
Directory to save the model. Defaults to None. |
None
|
cuda_idx |
int
|
idx of cuda device to use. Defaults to 0. |
0
|
Returns:
Type | Description |
---|---|
Module
|
nn.Module: trained model |
Source code in oodeel/utils/torch_training_tools.py
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
|