TorchDataHandler
DictDataset
¶
Bases: Dataset
Dictionary pytorch dataset
Wrapper to output a dictionary of tensors at the getitem call of a dataset. Some mapping, filtering and concatenation methods are implemented to imitate tensorflow datasets features.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset |
Dataset
|
Dataset to wrap. |
required |
output_keys |
output_keys[str]
|
Keys describing the output tensors. |
['input', 'label']
|
Source code in oodeel/datasets/torch_data_handler.py
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
|
output_keys: list
property
¶
Get the list of keys in a dict-based item from the dataset.
Returns:
Name | Type | Description |
---|---|---|
list |
list
|
feature keys of the dataset. |
output_shapes: list
property
¶
Get a list of the tensor shapes in an item from the dataset.
Returns:
Name | Type | Description |
---|---|---|
list |
list
|
tensor shapes of an dataset item. |
__getitem__(index)
¶
Return a dictionary of tensors corresponding to a specfic index.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
index |
int
|
the index of the item to retrieve. |
required |
Returns:
Name | Type | Description |
---|---|---|
dict |
dict
|
tensors for the item at the specific index. |
Source code in oodeel/datasets/torch_data_handler.py
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
|
__len__()
¶
Return the length of the dataset, i.e. the number of items.
Returns:
Name | Type | Description |
---|---|---|
int |
int
|
length of the dataset. |
Source code in oodeel/datasets/torch_data_handler.py
245 246 247 248 249 250 251 |
|
concatenate(other_dataset, inplace=False)
¶
Concatenate with another dataset
Parameters:
Name | Type | Description | Default |
---|---|---|---|
other_dataset |
DictDataset
|
Dataset to concatenate with |
required |
inplace |
bool
|
if False, applies the filtering on a copied version of the dataset. Defaults to False. |
False
|
Returns:
Name | Type | Description |
---|---|---|
DictDataset |
DictDataset
|
Concatenated dataset |
Source code in oodeel/datasets/torch_data_handler.py
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
|
filter(filter_fn, inplace=False)
¶
Filter the dataset
Parameters:
Name | Type | Description | Default |
---|---|---|---|
filter_fn |
Callable
|
filter function f: dict -> bool |
required |
inplace |
bool
|
if False, applies the filtering on a copied version of the dataset. Defaults to False. |
False
|
Returns:
Name | Type | Description |
---|---|---|
DictDataset |
DictDataset
|
Filtered dataset |
Source code in oodeel/datasets/torch_data_handler.py
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
|
map(map_fn, inplace=False)
¶
Map the dataset
Parameters:
Name | Type | Description | Default |
---|---|---|---|
map_fn |
Callable
|
map function f: dict -> dict |
required |
inplace |
bool
|
if False, applies the mapping on a copied version of the dataset. Defaults to False. |
False
|
Return
DictDataset: Mapped dataset
Source code in oodeel/datasets/torch_data_handler.py
183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
|
TorchDataHandler
¶
Bases: DataHandler
Class to manage torch DictDataset. The aim is to provide a simple interface for working with torch datasets and manage them without having to use torch syntax.
Source code in oodeel/datasets/torch_data_handler.py
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 |
|
assign_feature_value(dataset, feature_key, value)
staticmethod
¶
Assign a value to a feature for every sample in a DictDataset
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset |
DictDataset
|
DictDataset to assign the value to |
required |
feature_key |
str
|
Feature to assign the value to |
required |
value |
int
|
Value to assign |
required |
Returns:
Type | Description |
---|---|
DictDataset
|
DictDataset |
Source code in oodeel/datasets/torch_data_handler.py
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 |
|
filter_by_feature_value(dataset, feature_key, values, excluded=False)
staticmethod
¶
Filter the dataset by checking the value of a feature is in values
Note
This function can be a bit of time consuming since it needs to iterate over the whole dataset.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset |
DictDataset
|
Dataset to filter |
required |
feature_key |
str
|
Feature name to check the value |
required |
values |
list
|
Feature_key values to keep |
required |
excluded |
bool
|
To keep (False) or exclude (True) the samples with Feature_key value included in Values. Defaults to False. |
False
|
Returns:
Name | Type | Description |
---|---|---|
DictDataset |
DictDataset
|
Filtered dataset |
Source code in oodeel/datasets/torch_data_handler.py
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 |
|
get_dataset_length(dataset)
staticmethod
¶
Number of items in a dataset
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset |
DictDataset
|
Dataset |
required |
Returns:
Name | Type | Description |
---|---|---|
int |
int
|
Dataset length |
Source code in oodeel/datasets/torch_data_handler.py
687 688 689 690 691 692 693 694 695 696 697 |
|
get_ds_feature_keys(dataset)
staticmethod
¶
Get the feature keys of a DictDataset
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset |
DictDataset
|
Dataset to get the feature keys from |
required |
Returns:
Name | Type | Description |
---|---|---|
list |
list
|
List of feature keys |
Source code in oodeel/datasets/torch_data_handler.py
477 478 479 480 481 482 483 484 485 486 487 488 |
|
get_feature(dataset, feature_key)
staticmethod
¶
Extract a feature from a dataset
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset |
Dataset
|
Dataset to extract the feature from |
required |
feature_key |
Union[str, int]
|
feature to extract |
required |
Returns:
Type | Description |
---|---|
DictDataset
|
tf.data.Dataset: dataset built with the extracted feature only |
Source code in oodeel/datasets/torch_data_handler.py
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 |
|
get_feature_from_ds(dataset, feature_key)
staticmethod
¶
Get a feature from a DictDataset
Note
This function can be a bit time consuming since it needs to iterate over the whole dataset.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset |
DictDataset
|
Dataset to get the feature from |
required |
feature_key |
str
|
Feature value to get |
required |
Returns:
Type | Description |
---|---|
ndarray
|
np.ndarray: Feature values for dataset |
Source code in oodeel/datasets/torch_data_handler.py
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 |
|
get_feature_shape(dataset, feature_key)
staticmethod
¶
Get the shape of a feature of dataset identified by feature_key
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset |
Dataset
|
a Dataset |
required |
feature_key |
Union[str, int]
|
The identifier of the feature |
required |
Returns:
Name | Type | Description |
---|---|---|
tuple |
tuple
|
the shape of feature_id |
Source code in oodeel/datasets/torch_data_handler.py
699 700 701 702 703 704 705 706 707 708 709 710 |
|
get_input_from_dataset_item(elem)
staticmethod
¶
Get the tensor that is to be feed as input to a model from a dataset element.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
elem |
ItemType
|
dataset element to extract input from |
required |
Returns:
Name | Type | Description |
---|---|---|
Any |
Any
|
Input tensor |
Source code in oodeel/datasets/torch_data_handler.py
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 |
|
get_item_length(dataset)
staticmethod
¶
Number of elements in a dataset item
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset |
DictDataset
|
Dataset |
required |
Returns:
Name | Type | Description |
---|---|---|
int |
int
|
Item length |
Source code in oodeel/datasets/torch_data_handler.py
675 676 677 678 679 680 681 682 683 684 685 |
|
get_label_from_dataset_item(item)
staticmethod
¶
Retrieve label tensor from item as a tuple/list. Label must be at index 1 in the item tuple. If one-hot encoded, labels are converted to single value.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
elem |
ItemType
|
dataset element to extract label from |
required |
Returns:
Name | Type | Description |
---|---|---|
Any |
Label tensor |
Source code in oodeel/datasets/torch_data_handler.py
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 |
|
has_feature_key(dataset, key)
staticmethod
¶
Check if a DictDataset has a feature denoted by key
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset |
DictDataset
|
Dataset to check |
required |
key |
str
|
Key to check |
required |
Returns:
Name | Type | Description |
---|---|---|
bool |
bool
|
If the dataset has a feature denoted by key |
Source code in oodeel/datasets/torch_data_handler.py
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 |
|
load_custom_dataset(dataset_id, keys=None)
staticmethod
¶
Load a custom Dataset by ensuring it has the correct format (dict-based)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset_id |
Dataset
|
Dataset |
required |
keys |
list
|
Keys to use for features if dataset_id is tuple based. Defaults to None. |
None
|
Returns:
Type | Description |
---|---|
DictDataset
|
DictDataset |
Source code in oodeel/datasets/torch_data_handler.py
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 |
|
load_dataset(dataset_id, keys=None, load_kwargs={})
classmethod
¶
Load dataset from different manners
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset_id |
Union[Dataset, ItemType, str]
|
dataset identification |
required |
keys |
list
|
Features keys. If None, assigned as "input_i" for i-th feature. Defaults to None. |
None
|
load_kwargs |
dict
|
Additional loading kwargs. Defaults to {}. |
{}
|
Returns:
Name | Type | Description |
---|---|---|
DictDataset |
DictDataset
|
dataset |
Source code in oodeel/datasets/torch_data_handler.py
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
|
load_dataset_from_arrays(dataset_id, keys=None)
staticmethod
¶
Load a torch.utils.data.Dataset from an array or a tuple/dict of arrays.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset_id |
ItemType
|
numpy / torch array(s) to load. |
required |
keys |
list
|
Features keys. If None, assigned as "input_i" for i-th feature. Defaults to None. |
None
|
Returns:
Name | Type | Description |
---|---|---|
DictDataset |
DictDataset
|
dataset |
Source code in oodeel/datasets/torch_data_handler.py
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
|
load_from_torchvision(dataset_id, root, transform=DEFAULT_TRANSFORM, target_transform=DEFAULT_TARGET_TRANSFORM, download=False, **load_kwargs)
classmethod
¶
Load a Dataset from the torchvision datasets catalog
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset_id |
str
|
Identifier of the dataset |
required |
root |
str
|
Root directory of dataset |
required |
transform |
Callable
|
Transform function to apply to the input. Defaults to DEFAULT_TRANSFORM. |
DEFAULT_TRANSFORM
|
target_transform |
Callable
|
Transform function to apply to the target. Defaults to DEFAULT_TARGET_TRANSFORM. |
DEFAULT_TARGET_TRANSFORM
|
download |
bool
|
If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. Defaults to False. |
False
|
load_kwargs |
dict
|
Loading kwargs to add to the initialization of dataset. |
{}
|
Returns:
Name | Type | Description |
---|---|---|
DictDataset |
DictDataset
|
dataset |
Source code in oodeel/datasets/torch_data_handler.py
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 |
|
map_ds(dataset, map_fn)
staticmethod
¶
Map a function to a DictDataset
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset |
DictDataset
|
Dataset to map the function to |
required |
map_fn |
Callable
|
Function to map |
required |
Returns:
Name | Type | Description |
---|---|---|
DictDataset |
DictDataset
|
Mapped dataset |
Source code in oodeel/datasets/torch_data_handler.py
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 |
|
merge(id_dataset, ood_dataset, resize=False, shape=None)
staticmethod
¶
Merge two instances of DictDataset
Parameters:
Name | Type | Description | Default |
---|---|---|---|
id_dataset |
DictDataset
|
dataset of in-distribution data |
required |
ood_dataset |
DictDataset
|
dataset of out-of-distribution data |
required |
resize |
Optional[bool]
|
toggles if input tensors of the datasets have to be resized to have the same shape. Defaults to True. |
False
|
shape |
Optional[Tuple[int]]
|
shape to use for resizing input tensors. If None, the tensors are resized with the shape of the id_dataset input tensors. Defaults to None. |
None
|
Returns:
Name | Type | Description |
---|---|---|
DictDataset |
DictDataset
|
merged dataset |
Source code in oodeel/datasets/torch_data_handler.py
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 |
|
prepare_for_training(dataset, batch_size, shuffle=False, preprocess_fn=None, augment_fn=None, output_keys=None, dict_based_fns=False, shuffle_buffer_size=None)
classmethod
¶
Prepare a DataLoader for training
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset |
DictDataset
|
Dataset to prepare |
required |
batch_size |
int
|
Batch size |
required |
shuffle |
bool
|
Wether to shuffle the dataloader or not |
False
|
preprocess_fn |
Callable
|
Preprocessing function to apply to the dataset. Defaults to None. |
None
|
augment_fn |
Callable
|
Augment function to be used (when the returned dataset is to be used for training). Defaults to None. |
None
|
output_keys |
list
|
List of keys corresponding to the features that will be returned. Keep all features if None. Defaults to None. |
None
|
dict_based_fns |
bool
|
Whether to use preprocess and DA functions as dict based (if True) or as tuple based (if False). Defaults to False. |
False
|
shuffle_buffer_size |
int
|
Size of the shuffle buffer. Not used in torch because we only rely on Map-Style datasets. Still as argument for API consistency. Defaults to None. |
None
|
Returns:
Name | Type | Description |
---|---|---|
DataLoader |
DataLoader
|
dataloader |
Source code in oodeel/datasets/torch_data_handler.py
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 |
|
dict_only_ds(ds_handling_method)
¶
Decorator to ensure that the dataset is a dict dataset and that the input key matches one of the feature keys. The signature of decorated functions must be function(dataset, args, *kwargs) with feature_key either in kwargs or args[0] when relevant.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ds_handling_method |
Callable
|
method to decorate |
required |
Returns:
Type | Description |
---|---|
Callable
|
decorated method |
Source code in oodeel/datasets/torch_data_handler.py
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
|
to_torch(array)
¶
Convert an array into a torch Tensor
Parameters:
Name | Type | Description | Default |
---|---|---|---|
array |
TensorType
|
array to convert |
required |
Returns:
Type | Description |
---|---|
Tensor
|
torch.Tensor: converted array |
Source code in oodeel/datasets/torch_data_handler.py
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
|