Progressive Growing of GANS (ProGAN)¶
View colab tutorial | View source | 📰 Paper
Progressive Growing GAN also known as ProGAN is an extension of the GAN training process that allows training generating models with stability that can produce large-high-quality images.
It involves training by starting with a very small image and then layer blocks are added gradually so that the output size of the generator model increases and the input size of the discriminator model increases until the desired image size is obtained. This approach has proven to be very effective in creating highly realistic, high-quality synthetic images.
It basically includes 4 steps: - Progressive growing (of model and layers)
-
Minibatch std on Discriminator
-
Normalization with PixelNorm
-
Equalized Learning Rate
Simplified view of ProGAN (Image source)
Here we can see in the above figure that Progressive Growing GAN involves using a generator and discriminator model with the traditional GAN structure and its starts with very small images, such as 4×4 pixels.
During training, it systematically adds new convolutional blocks to both the generator model and the discriminator model. This gradual addition of convolutional layers allows models to effectively learn coarse-level details early on and then learn even finer details, both on the generator and discriminator.
ProGAN goals: - Produce high-quality, high-resolution images. - Greater diversity of images in the output. - Improve stability in GANs. - Increase variation in the generated images
NETWORK ARCHITECTURE : ProGAN¶
GENERATOR NETWORK¶
A generator to incrementally size the output by starting with a very small image, then the blocks of layers added incrementally and increasing the input size of the discriminant model until the desired image size is obtained.
DISCRIMINATOR NETWORK¶
A discriminator for discerning real from generated images.
LOSS FUNCTIONS¶
ProGAN use one of the common loss functions in GANs, the Wasserstein loss function, also known as WGAN-GP from the paper Improved Training of Wasserstein GANs.
Where: - x' is the generated image. - x is an image from the training set. - D is the discriminator. - GP is a gradient penalty that helps stabilize training. - The a term in the gradient penalty refers to a tensor of random numbers between 0 and 1, chosen uniformly at random. - The parameter λ is common to set to 10.
Example¶
# Augmentare Imports
import augmentare
from augmentare.methods.gan import *
# Create GAN Generator
net_gen = PROGANGenerator(
latent_size=128,
in_channels=128,
img_channels=3,
alpha=1e-5,
steps=4
)
# Create GAN Discriminator
net_dis = PROGANDiscriminator(
in_channels=128,
img_channels=3,
alpha=1e-5,
steps=4
)
# Optimizers and Loss functions
optimizer_gen = Adam(net_gen.parameters(), lr=1e-3, betas=(0.0, 0.999))
optimizer_dis = Adam(net_dis.parameters(), lr=1e-3, betas=(0.0, 0.999))
loss_fn_gen = torch.cuda.amp.GradScaler()
loss_fn_dis = torch.cuda.amp.GradScaler()
# Create GAN network
gan = PROGAN(
net_gen,
net_dis,
optimizer_gen,
optimizer_dis,
loss_fn_gen,
loss_fn_dis,
device,
latent_size=128
)
# Training the ProGAN network
gen_losses, dis_losses = gan.train(
subset_a=dataloader,
num_epochs=5,
num_decay_epochs=None,
num_classes = None,
batch_size = [32, 32, 32, 16, 16, 16, 16, 8, 4],
subset_b = None
)
# Sample images from the Generator
img_list = gan.generate_samples(
nb_samples = 36,
num_classes = None,
real_image_a = None,
real_image_b = None
)
Notebooks¶
PROGAN
¶
A basic ProGAN class for synthesizing high resolution and high quality images via the
incremental growing of the discriminator and the generator networks during the training process.
__init__(self,
generator: augmentare.methods.gan.base.BaseGenerator,
discriminator: augmentare.methods.gan.base.BaseDiscriminator,
optimizer_gen: torch.optim.optimizer.Optimizer,
optimizer_dis: torch.optim.optimizer.Optimizer,
loss_fn_gen: Callable,
loss_fn_dis: Callable,
device,
latent_size: Optional[int] = None)
¶
generator: augmentare.methods.gan.base.BaseGenerator,
discriminator: augmentare.methods.gan.base.BaseDiscriminator,
optimizer_gen: torch.optim.optimizer.Optimizer,
optimizer_dis: torch.optim.optimizer.Optimizer,
loss_fn_gen: Callable,
loss_fn_dis: Callable,
device,
latent_size: Optional[int] = None)
generate_samples(self,
nb_samples: int,
num_classes=None,
real_image_a=None,
real_image_b=None)
¶
nb_samples: int,
num_classes=None,
real_image_a=None,
real_image_b=None)
Sample images from the generator.
Return
-
img_list
A list of generated images
train(self,
subset_a: Union[, torch.utils.data.dataset.Dataset] ,
num_epochs: int,
num_decay_epochs=typing.Optional[int],
num_classes=typing.Optional[int],
batch_size=typing.Optional[int],
subset_b=typing.Union[, torch.utils.data.dataset.Dataset, None])
¶
subset_a: Union[
num_epochs: int,
num_decay_epochs=typing.Optional[int],
num_classes=typing.Optional[int],
batch_size=typing.Optional[int],
subset_b=typing.Union[
Train both networks and return the losses.
Parameters
-
subset_a : Union[
, torch.utils.data.dataset.Dataset] Torch.tensor or Dataset
-
num_epochs : int
The number of epochs you want to train your ProGAN
-
batch_size : batch_size=typing.Optional[int]
Training batch size
Return
-
gen_losses, dis_losses
The losses of both the discriminator and generator
train_discriminator(self,
real_samples,
noise)
¶
real_samples,
noise)
Train the discriminator one step and return the loss.
Parameters
-
real_samples : real_samples
True samples of your dataset
-
noise : noise
Noise for train discriminator
Return
-
dis_loss
The loss of the discriminator
train_generator(self,
noise)
¶
noise)
Train the generator one step and return the loss.
Parameters
-
noise : noise
Noise for train generator
Return
-
gen_loss
The loss of the generator
PROGANGenerator
¶
A generator to incrementally size the output by starting with a very small image,
then the blocks of layers added incrementally and increasing the input
size of the discriminant model until the desired image size is obtained.
__init__(self,
latent_size,
in_channels,
img_channels=3,
alpha=1e-05,
steps=4)
¶
latent_size,
in_channels,
img_channels=3,
alpha=1e-05,
steps=4)
add_module(self,
name: str,
module: Optional[ForwardRef('Module')]) -> None
¶
name: str,
module: Optional[ForwardRef('Module')]) -> None
Adds a child module to the current module.
apply(self: ~T,
fn: Callable[[ForwardRef('Module')], None]) -> ~T
¶
fn: Callable[[ForwardRef('Module')], None]) -> ~T
Applies fn
recursively to every submodule (as returned by .children()
)
as well as self. Typical use includes initializing the parameters of a model
(see also :ref:nn-init-doc
).
bfloat16(self: ~T) -> ~T
¶
Casts all floating point parameters and buffers to bfloat16
datatype.
buffers(self,
recurse: bool = True) -> Iterator[torch.Tensor]
¶
recurse: bool = True) -> Iterator[torch.Tensor]
Returns an iterator over module buffers.
children(self) -> Iterator[ForwardRef('Module')]
¶
Returns an iterator over immediate children modules.
compile(self,
args,
*kwargs)
¶
args,
*kwargs)
Compile this Module's forward using :func:torch.compile
.
cpu(self: ~T) -> ~T
¶
Moves all model parameters and buffers to the CPU.
cuda(self: ~T,
device: Union[int, torch.device, None] = None) -> ~T
¶
device: Union[int, torch.device, None] = None) -> ~T
Moves all model parameters and buffers to the GPU.
double(self: ~T) -> ~T
¶
Casts all floating point parameters and buffers to double
datatype.
eval(self: ~T) -> ~T
¶
Sets the module in evaluation mode.
extra_repr(self) -> str
¶
Set the extra representation of the module
float(self: ~T) -> ~T
¶
Casts all floating point parameters and buffers to float
datatype.
forward(self,
noise,
labels=None)
¶
noise,
labels=None)
A forward function PROGANGenerator.
get_buffer(self,
target: str) -> 'Tensor'
¶
target: str) -> 'Tensor'
Returns the buffer given by target
if it exists,
otherwise throws an error.
get_extra_state(self) -> Any
¶
Returns any extra state to include in the module's state_dict.
Implement this and a corresponding :func:set_extra_state
for your module
if you need to store extra state. This function is called when building the
module's state_dict()
.
get_parameter(self,
target: str) -> 'Parameter'
¶
target: str) -> 'Parameter'
Returns the parameter given by target
if it exists,
otherwise throws an error.
get_submodule(self,
target: str) -> 'Module'
¶
target: str) -> 'Module'
Returns the submodule given by target
if it exists,
otherwise throws an error.
half(self: ~T) -> ~T
¶
Casts all floating point parameters and buffers to half
datatype.
ipu(self: ~T,
device: Union[int, torch.device, None] = None) -> ~T
¶
device: Union[int, torch.device, None] = None) -> ~T
Moves all model parameters and buffers to the IPU.
load_state_dict(self,
state_dict: Mapping[str, Any],
strict: bool = True,
assign: bool = False)
¶
state_dict: Mapping[str, Any],
strict: bool = True,
assign: bool = False)
Copies parameters and buffers from :attr:state_dict
into
this module and its descendants. If :attr:strict
is True
, then
the keys of :attr:state_dict
must exactly match the keys returned
by this module's :meth:~torch.nn.Module.state_dict
function.
modules(self) -> Iterator[ForwardRef('Module')]
¶
Returns an iterator over all modules in the network.
named_buffers(self,
prefix: str = '',
recurse: bool = True,
remove_duplicate: bool = True) -> Iterator[Tuple[str, torch.Tensor]]
¶
prefix: str = '',
recurse: bool = True,
remove_duplicate: bool = True) -> Iterator[Tuple[str, torch.Tensor]]
Returns an iterator over module buffers, yielding both the
name of the buffer as well as the buffer itself.
named_children(self) -> Iterator[Tuple[str, ForwardRef('Module')]]
¶
Returns an iterator over immediate children modules, yielding both
the name of the module as well as the module itself.
named_modules(self,
memo: Optional[Set[ForwardRef('Module')]] = None,
prefix: str = '',
remove_duplicate: bool = True)
¶
memo: Optional[Set[ForwardRef('Module')]] = None,
prefix: str = '',
remove_duplicate: bool = True)
Returns an iterator over all modules in the network, yielding
both the name of the module as well as the module itself.
named_parameters(self,
prefix: str = '',
recurse: bool = True,
remove_duplicate: bool = True) -> Iterator[Tuple[str, torch.nn.parameter.Parameter]]
¶
prefix: str = '',
recurse: bool = True,
remove_duplicate: bool = True) -> Iterator[Tuple[str, torch.nn.parameter.Parameter]]
Returns an iterator over module parameters, yielding both the
name of the parameter as well as the parameter itself.
parameters(self,
recurse: bool = True) -> Iterator[torch.nn.parameter.Parameter]
¶
recurse: bool = True) -> Iterator[torch.nn.parameter.Parameter]
Returns an iterator over module parameters.
register_backward_hook(self,
hook: Callable[[ForwardRef('Module'), Union[Tuple[torch.Tensor, ...], torch.Tensor],
Union[Tuple[torch.Tensor, ...], torch.Tensor]],
Union[None, Tuple[torch.Tensor, ...], torch.Tensor]]) -> torch.utils.hooks.RemovableHandle
¶
hook: Callable[[ForwardRef('Module'), Union[Tuple[torch.Tensor, ...], torch.Tensor],
Union[Tuple[torch.Tensor, ...], torch.Tensor]],
Union[None, Tuple[torch.Tensor, ...], torch.Tensor]]) -> torch.utils.hooks.RemovableHandle
Registers a backward hook on the module.
register_buffer(self,
name: str,
tensor: Optional[torch.Tensor],
persistent: bool = True) -> None
¶
name: str,
tensor: Optional[torch.Tensor],
persistent: bool = True) -> None
Adds a buffer to the module.
register_forward_hook(self,
hook: Union[Callable[[~T, Tuple[Any, ...], Any],
Optional[Any]],
Callable[[~T, Tuple[Any, ...],
Dict[str, Any], Any],
Optional[Any]]],
*,
prepend: bool = False,
with_kwargs: bool = False,
always_call: bool = False) -> torch.utils.hooks.RemovableHandle
¶
hook: Union[Callable[[~T, Tuple[Any, ...], Any],
Optional[Any]],
Callable[[~T, Tuple[Any, ...],
Dict[str, Any], Any],
Optional[Any]]],
*,
prepend: bool = False,
with_kwargs: bool = False,
always_call: bool = False) -> torch.utils.hooks.RemovableHandle
Registers a forward hook on the module.
register_forward_pre_hook(self,
hook: Union[Callable[[~T, Tuple[Any, ...]],
Optional[Any]],
Callable[[~T, Tuple[Any, ...],
Dict[str, Any]],
Optional[Tuple[Any, Dict[str, Any]]]]],
*,
prepend: bool = False,
with_kwargs: bool = False) -> torch.utils.hooks.RemovableHandle
¶
hook: Union[Callable[[~T, Tuple[Any, ...]],
Optional[Any]],
Callable[[~T, Tuple[Any, ...],
Dict[str, Any]],
Optional[Tuple[Any, Dict[str, Any]]]]],
*,
prepend: bool = False,
with_kwargs: bool = False) -> torch.utils.hooks.RemovableHandle
Registers a forward pre-hook on the module.
register_full_backward_hook(self,
hook: Callable[[ForwardRef('Module'), Union[Tuple[torch.Tensor, ...], torch.Tensor],
Union[Tuple[torch.Tensor, ...], torch.Tensor]],
Union[None, Tuple[torch.Tensor, ...], torch.Tensor]],
prepend: bool = False) -> torch.utils.hooks.RemovableHandle
¶
hook: Callable[[ForwardRef('Module'), Union[Tuple[torch.Tensor, ...], torch.Tensor],
Union[Tuple[torch.Tensor, ...], torch.Tensor]],
Union[None, Tuple[torch.Tensor, ...], torch.Tensor]],
prepend: bool = False) -> torch.utils.hooks.RemovableHandle
Registers a backward hook on the module.
register_full_backward_pre_hook(self,
hook: Callable[[ForwardRef('Module'), Union[Tuple[torch.Tensor, ...], torch.Tensor]],
Union[None, Tuple[torch.Tensor, ...], torch.Tensor]],
prepend: bool = False) -> torch.utils.hooks.RemovableHandle
¶
hook: Callable[[ForwardRef('Module'), Union[Tuple[torch.Tensor, ...], torch.Tensor]],
Union[None, Tuple[torch.Tensor, ...], torch.Tensor]],
prepend: bool = False) -> torch.utils.hooks.RemovableHandle
Registers a backward pre-hook on the module.
register_load_state_dict_post_hook(self,
hook)
¶
hook)
Registers a post hook to be run after module's load_state_dict
is called.
register_module(self,
name: str,
module: Optional[ForwardRef('Module')]) -> None
¶
name: str,
module: Optional[ForwardRef('Module')]) -> None
Alias for :func:add_module
.
register_parameter(self,
name: str,
param: Optional[torch.nn.parameter.Parameter]) -> None
¶
name: str,
param: Optional[torch.nn.parameter.Parameter]) -> None
Adds a parameter to the module.
register_state_dict_pre_hook(self,
hook)
¶
hook)
These hooks will be called with arguments: self
, prefix
,
and keep_vars
before calling state_dict
on self
. The registered
hooks can be used to perform pre-processing before the state_dict
call is made.
requires_grad_(self: ~T,
requires_grad: bool = True) -> ~T
¶
requires_grad: bool = True) -> ~T
Change if autograd should record operations on parameters in this
module.
set_extra_state(self,
state: Any)
¶
state: Any)
This function is called from :func:load_state_dict
to handle any extra state
found within the state_dict
. Implement this function and a corresponding
:func:get_extra_state
for your module if you need to store extra state within its
state_dict
.
share_memory(self: ~T) -> ~T
¶
See :meth:torch.Tensor.share_memory_
state_dict(self,
*args,
destination=None,
prefix='',
keep_vars=False)
¶
*args,
destination=None,
prefix='',
keep_vars=False)
Returns a dictionary containing references to the whole state of the module.
to(self,
args,
*kwargs)
¶
args,
*kwargs)
Moves and/or casts the parameters and buffers.
to_empty(self: ~T,
*,
device: Union[str, torch.device],
recurse: bool = True) -> ~T
¶
*,
device: Union[str, torch.device],
recurse: bool = True) -> ~T
Moves the parameters and buffers to the specified device without copying storage.
train(self: ~T,
mode: bool = True) -> ~T
¶
mode: bool = True) -> ~T
Sets the module in training mode.
type(self: ~T,
dst_type: Union[torch.dtype, str]) -> ~T
¶
dst_type: Union[torch.dtype, str]) -> ~T
Casts all parameters and buffers to :attr:dst_type
.
xpu(self: ~T,
device: Union[int, torch.device, None] = None) -> ~T
¶
device: Union[int, torch.device, None] = None) -> ~T
Moves all model parameters and buffers to the XPU.
zero_grad(self,
set_to_none: bool = True) -> None
¶
set_to_none: bool = True) -> None
Resets gradients of all model parameters. See similar function
under :class:torch.optim.Optimizer
for more context.
PROGANDiscriminator
¶
A discriminator for discerning real from generated images.
__init__(self,
in_channels,
img_channels=3,
alpha=1e-05,
steps=4)
¶
in_channels,
img_channels=3,
alpha=1e-05,
steps=4)
add_module(self,
name: str,
module: Optional[ForwardRef('Module')]) -> None
¶
name: str,
module: Optional[ForwardRef('Module')]) -> None
Adds a child module to the current module.
apply(self: ~T,
fn: Callable[[ForwardRef('Module')], None]) -> ~T
¶
fn: Callable[[ForwardRef('Module')], None]) -> ~T
Applies fn
recursively to every submodule (as returned by .children()
)
as well as self. Typical use includes initializing the parameters of a model
(see also :ref:nn-init-doc
).
bfloat16(self: ~T) -> ~T
¶
Casts all floating point parameters and buffers to bfloat16
datatype.
buffers(self,
recurse: bool = True) -> Iterator[torch.Tensor]
¶
recurse: bool = True) -> Iterator[torch.Tensor]
Returns an iterator over module buffers.
children(self) -> Iterator[ForwardRef('Module')]
¶
Returns an iterator over immediate children modules.
compile(self,
args,
*kwargs)
¶
args,
*kwargs)
Compile this Module's forward using :func:torch.compile
.
cpu(self: ~T) -> ~T
¶
Moves all model parameters and buffers to the CPU.
cuda(self: ~T,
device: Union[int, torch.device, None] = None) -> ~T
¶
device: Union[int, torch.device, None] = None) -> ~T
Moves all model parameters and buffers to the GPU.
double(self: ~T) -> ~T
¶
Casts all floating point parameters and buffers to double
datatype.
eval(self: ~T) -> ~T
¶
Sets the module in evaluation mode.
extra_repr(self) -> str
¶
Set the extra representation of the module
float(self: ~T) -> ~T
¶
Casts all floating point parameters and buffers to float
datatype.
forward(self,
noise,
labels=None)
¶
noise,
labels=None)
A forward function PROGANDiscriminator.
get_buffer(self,
target: str) -> 'Tensor'
¶
target: str) -> 'Tensor'
Returns the buffer given by target
if it exists,
otherwise throws an error.
get_extra_state(self) -> Any
¶
Returns any extra state to include in the module's state_dict.
Implement this and a corresponding :func:set_extra_state
for your module
if you need to store extra state. This function is called when building the
module's state_dict()
.
get_parameter(self,
target: str) -> 'Parameter'
¶
target: str) -> 'Parameter'
Returns the parameter given by target
if it exists,
otherwise throws an error.
get_submodule(self,
target: str) -> 'Module'
¶
target: str) -> 'Module'
Returns the submodule given by target
if it exists,
otherwise throws an error.
half(self: ~T) -> ~T
¶
Casts all floating point parameters and buffers to half
datatype.
ipu(self: ~T,
device: Union[int, torch.device, None] = None) -> ~T
¶
device: Union[int, torch.device, None] = None) -> ~T
Moves all model parameters and buffers to the IPU.
load_state_dict(self,
state_dict: Mapping[str, Any],
strict: bool = True,
assign: bool = False)
¶
state_dict: Mapping[str, Any],
strict: bool = True,
assign: bool = False)
Copies parameters and buffers from :attr:state_dict
into
this module and its descendants. If :attr:strict
is True
, then
the keys of :attr:state_dict
must exactly match the keys returned
by this module's :meth:~torch.nn.Module.state_dict
function.
modules(self) -> Iterator[ForwardRef('Module')]
¶
Returns an iterator over all modules in the network.
named_buffers(self,
prefix: str = '',
recurse: bool = True,
remove_duplicate: bool = True) -> Iterator[Tuple[str, torch.Tensor]]
¶
prefix: str = '',
recurse: bool = True,
remove_duplicate: bool = True) -> Iterator[Tuple[str, torch.Tensor]]
Returns an iterator over module buffers, yielding both the
name of the buffer as well as the buffer itself.
named_children(self) -> Iterator[Tuple[str, ForwardRef('Module')]]
¶
Returns an iterator over immediate children modules, yielding both
the name of the module as well as the module itself.
named_modules(self,
memo: Optional[Set[ForwardRef('Module')]] = None,
prefix: str = '',
remove_duplicate: bool = True)
¶
memo: Optional[Set[ForwardRef('Module')]] = None,
prefix: str = '',
remove_duplicate: bool = True)
Returns an iterator over all modules in the network, yielding
both the name of the module as well as the module itself.
named_parameters(self,
prefix: str = '',
recurse: bool = True,
remove_duplicate: bool = True) -> Iterator[Tuple[str, torch.nn.parameter.Parameter]]
¶
prefix: str = '',
recurse: bool = True,
remove_duplicate: bool = True) -> Iterator[Tuple[str, torch.nn.parameter.Parameter]]
Returns an iterator over module parameters, yielding both the
name of the parameter as well as the parameter itself.
parameters(self,
recurse: bool = True) -> Iterator[torch.nn.parameter.Parameter]
¶
recurse: bool = True) -> Iterator[torch.nn.parameter.Parameter]
Returns an iterator over module parameters.
register_backward_hook(self,
hook: Callable[[ForwardRef('Module'), Union[Tuple[torch.Tensor, ...], torch.Tensor],
Union[Tuple[torch.Tensor, ...], torch.Tensor]],
Union[None, Tuple[torch.Tensor, ...], torch.Tensor]]) -> torch.utils.hooks.RemovableHandle
¶
hook: Callable[[ForwardRef('Module'), Union[Tuple[torch.Tensor, ...], torch.Tensor],
Union[Tuple[torch.Tensor, ...], torch.Tensor]],
Union[None, Tuple[torch.Tensor, ...], torch.Tensor]]) -> torch.utils.hooks.RemovableHandle
Registers a backward hook on the module.
register_buffer(self,
name: str,
tensor: Optional[torch.Tensor],
persistent: bool = True) -> None
¶
name: str,
tensor: Optional[torch.Tensor],
persistent: bool = True) -> None
Adds a buffer to the module.
register_forward_hook(self,
hook: Union[Callable[[~T, Tuple[Any, ...], Any],
Optional[Any]],
Callable[[~T, Tuple[Any, ...],
Dict[str, Any], Any],
Optional[Any]]],
*,
prepend: bool = False,
with_kwargs: bool = False,
always_call: bool = False) -> torch.utils.hooks.RemovableHandle
¶
hook: Union[Callable[[~T, Tuple[Any, ...], Any],
Optional[Any]],
Callable[[~T, Tuple[Any, ...],
Dict[str, Any], Any],
Optional[Any]]],
*,
prepend: bool = False,
with_kwargs: bool = False,
always_call: bool = False) -> torch.utils.hooks.RemovableHandle
Registers a forward hook on the module.
register_forward_pre_hook(self,
hook: Union[Callable[[~T, Tuple[Any, ...]],
Optional[Any]],
Callable[[~T, Tuple[Any, ...],
Dict[str, Any]],
Optional[Tuple[Any, Dict[str, Any]]]]],
*,
prepend: bool = False,
with_kwargs: bool = False) -> torch.utils.hooks.RemovableHandle
¶
hook: Union[Callable[[~T, Tuple[Any, ...]],
Optional[Any]],
Callable[[~T, Tuple[Any, ...],
Dict[str, Any]],
Optional[Tuple[Any, Dict[str, Any]]]]],
*,
prepend: bool = False,
with_kwargs: bool = False) -> torch.utils.hooks.RemovableHandle
Registers a forward pre-hook on the module.
register_full_backward_hook(self,
hook: Callable[[ForwardRef('Module'), Union[Tuple[torch.Tensor, ...], torch.Tensor],
Union[Tuple[torch.Tensor, ...], torch.Tensor]],
Union[None, Tuple[torch.Tensor, ...], torch.Tensor]],
prepend: bool = False) -> torch.utils.hooks.RemovableHandle
¶
hook: Callable[[ForwardRef('Module'), Union[Tuple[torch.Tensor, ...], torch.Tensor],
Union[Tuple[torch.Tensor, ...], torch.Tensor]],
Union[None, Tuple[torch.Tensor, ...], torch.Tensor]],
prepend: bool = False) -> torch.utils.hooks.RemovableHandle
Registers a backward hook on the module.
register_full_backward_pre_hook(self,
hook: Callable[[ForwardRef('Module'), Union[Tuple[torch.Tensor, ...], torch.Tensor]],
Union[None, Tuple[torch.Tensor, ...], torch.Tensor]],
prepend: bool = False) -> torch.utils.hooks.RemovableHandle
¶
hook: Callable[[ForwardRef('Module'), Union[Tuple[torch.Tensor, ...], torch.Tensor]],
Union[None, Tuple[torch.Tensor, ...], torch.Tensor]],
prepend: bool = False) -> torch.utils.hooks.RemovableHandle
Registers a backward pre-hook on the module.
register_load_state_dict_post_hook(self,
hook)
¶
hook)
Registers a post hook to be run after module's load_state_dict
is called.
register_module(self,
name: str,
module: Optional[ForwardRef('Module')]) -> None
¶
name: str,
module: Optional[ForwardRef('Module')]) -> None
Alias for :func:add_module
.
register_parameter(self,
name: str,
param: Optional[torch.nn.parameter.Parameter]) -> None
¶
name: str,
param: Optional[torch.nn.parameter.Parameter]) -> None
Adds a parameter to the module.
register_state_dict_pre_hook(self,
hook)
¶
hook)
These hooks will be called with arguments: self
, prefix
,
and keep_vars
before calling state_dict
on self
. The registered
hooks can be used to perform pre-processing before the state_dict
call is made.
requires_grad_(self: ~T,
requires_grad: bool = True) -> ~T
¶
requires_grad: bool = True) -> ~T
Change if autograd should record operations on parameters in this
module.
set_extra_state(self,
state: Any)
¶
state: Any)
This function is called from :func:load_state_dict
to handle any extra state
found within the state_dict
. Implement this function and a corresponding
:func:get_extra_state
for your module if you need to store extra state within its
state_dict
.
share_memory(self: ~T) -> ~T
¶
See :meth:torch.Tensor.share_memory_
state_dict(self,
*args,
destination=None,
prefix='',
keep_vars=False)
¶
*args,
destination=None,
prefix='',
keep_vars=False)
Returns a dictionary containing references to the whole state of the module.
to(self,
args,
*kwargs)
¶
args,
*kwargs)
Moves and/or casts the parameters and buffers.
to_empty(self: ~T,
*,
device: Union[str, torch.device],
recurse: bool = True) -> ~T
¶
*,
device: Union[str, torch.device],
recurse: bool = True) -> ~T
Moves the parameters and buffers to the specified device without copying storage.
train(self: ~T,
mode: bool = True) -> ~T
¶
mode: bool = True) -> ~T
Sets the module in training mode.
type(self: ~T,
dst_type: Union[torch.dtype, str]) -> ~T
¶
dst_type: Union[torch.dtype, str]) -> ~T
Casts all parameters and buffers to :attr:dst_type
.
xpu(self: ~T,
device: Union[int, torch.device, None] = None) -> ~T
¶
device: Union[int, torch.device, None] = None) -> ~T
Moves all model parameters and buffers to the XPU.
zero_grad(self,
set_to_none: bool = True) -> None
¶
set_to_none: bool = True) -> None
Resets gradients of all model parameters. See similar function
under :class:torch.optim.Optimizer
for more context.
Progressive Growing of GANs for Improved Quality, Stability, and Variation by Tero Karras & al (2018).